
31 The material presented in this chapter has been previously published in Rocha [1995c, 1995f,
1997d],

75

Figure 2: Models of
Selected Self-
Organization should be
based on the coupling
of a dynamical system
to a selection engine.

CHAPTER 4

CONTEXTUAL GENETIC ALGORITHMS31

1 Models with both Dynamic and Selective Dimensions

The origin of coded systems with both dynamic and selective dimensions is far from understood.
It is in fact the problem of the origin of life. But whether or not we know how coded systems can naturally
arise, should not stop us from exploring the dynamics-selection coupling of Selected Self-Organization, as
described in chapter 2, in scientific models and computational tools. Especially regarding the latter, we may
be able to improve information compression in current evolutionary computation algorithms tremendously
by including self-organizing layers between solution encoding and expression.

The study of evolutionary systems is often divided in two camps: those
that are concerned with self-organizing properties of dynamical systems, and
those concerned with models of genetically driven natural selection. The former
often use boolean networks and cellular automata as their computational models,
while the latter use genetic algorithms or other forms of evolutionary
computation. It is not very common to build models with both dimensions in
order to explore the nature of this fundamental coupling. It is precisely the nature
of the relationship between memory tokens of the selection engine, and
construction parts of the self-organizing dynamics that I wish to explore formally
here (figure 1). This relationship is in living systems implemented by the genetic
code. In abstract terms, it is the harnessing of dynamic materiality by symbolic
memory [Pattee, 1982, 1995a]. To fully explore it, it may be useful to frame the
problem in terms of the science of semiotics.

2 Semiotics of Living Organizations

As introduced in section 1.7 of chapter 2, semiotics concerns the study
of signs/symbols in three basic dimensions: syntactics (rule-based operations
between signs within the sign system), semantics (relationship between signs and
the world external to the sign system), and pragmatics (evaluation of the sign

system regarding the goals of their users) [Morris, 1946]. We can understand the semiotics of the genetic

76

Figure 3: Semiotics of the Genetic System

Action

Measurement

Figure 4: Genetic semiotics with 2 type symbol
system

system if we consider all processes taking place before translation as the set of syntactic operations; the
relation between mRNA (signifier) and folded amino acid chains (signified), through the genetic code, as
the implementation of a semantic relation; and finally, the selective pressures on the developed phenotypes
as the pragmatic evaluation of the genetic sign system. Figure 2, which is adapted from Peter Cariani’s
[1987] extensive discussion of the semiotics of living organizations, depicts these relationships.

Computational models of evolutionary
systems, such as genetic algorithms, explore only
small portions of the semiotics of the genetic
system scheme as depicted in figure 2, namely the
pragmatics axis between genotype and phenotype
through a linear code that establishes simpler
semantic relations. They do not generally explore
the syntax axis or the development portion of the
semantics axis (except for a few exceptions in the
field of Artificial Life [Kitano, 1984; Dellaert and
Beer, 1984].) I feel that the inclusion of a more
complete picture of the semiotics of living
organisms in computational models, can
contribute to a much better understanding of evolutionary systems, as well as the definition of more efficient
tools for adaptive systems theory. I will discuss the inclusion of syntax and a more complete developmental
semantics separately in the next sections. Let us start by looking into the semiotics of the genetic system in
more detail.

2.1 Two Type Symbol System: Contextual Environmental Information

Until now, the semiotics of DNA has been
considered to be strictly unidirectional: DNA stands for
proteins to be constructed. In other words, the symbolic
DNA encodes (through the genetic code) phenotypes
with repercussions in some environment. Naturally,
through variation and natural selection (pragmatic
evaluations) new semantic relations between genes and
phenotypes are created which are better adapted to a
particular environment. However, real-time contextual
measurements are not allowed by this unidirectional
semiotics. If in addition to symbols standing for actions
to be performed, the genetic sign system is also allowed
a second type of symbols standing for environmental,
contextual, measurements, then a richer semiotics can
be created which may have selective advantage in
rapidly changing environments, or in complicated,
context dependent, developmental processes. Figure 3
depicts such a sign system. The top plane contains two
different types of symbols which are combined in
different ways (symbolic operations). Type 1 symbols
stand for actions through a code 1 (e.g. the genetic

77

Semantic
Relations

Environment
Figure 5: Semantic Closure with 2 symbol
types

Figure 6: Selection of
Semantically Closed Units

Figure 7: Formal Semiotics

code) and type 2 symbols stand for measurements through a different code � which is being hypothesized
here.

Notice that code � is proposed here as an
abstraction referring to the set of mechanisms which will
link environmental measurements (context) to type 2
symbols. It is not expected to function as a proper genetic
code with clear cut symbols (nucleotide codons standing
for aminoacid chains). Jon Umerez [1995] has stressed
the importance of a code in any form of evolving
semiotics. In simple terms, what I refer to as a code here
is any mechanism able to relate “inert” material structures
(signifiers) to other material structures with some
functional dynamics (signifieds) “by virtue” of a larger
organizational closure. In other words, the function of the
material signifiers is not dependent on their particular
materiality, but on what
they are used to refer to for
the imbedding, material
semantic closure [Pattee,
1995a], as discussed in

chapter 1. Leaving pragmatic evaluations (selection) out of the picture
momentarily, the semantic closure with two symbol types, which is able to act
as well as perform measurements on its environment can be represented by the
cube in figure 4. The semiotic triadic relationship is only complete when
individual semantic closures are coupled to an environment which ultimately
selects (pragmatic evaluation) the most fit amongst these symbol-matter
closures (e.g. in natural selection, those that reproduce the most), as depicted
in figure 5. In section 4, genetic systems with 2 types of symbols are presented
by both discussing the RNA editing system and proposing a formal counterpart.

2.2 Embodiment and Implementation Dependence: Selected Self-Organization

The issue of materiality is extremely important for two reasons: (i) all which can be represented
in this evolutionary semiotics is restricted to what can be constructed by the specific, material, semantically
closed system in the first place; and (ii) selection is ultimately performed on this specific material
organization capable of performing a number of functions in an environment. The conceptual framework put
forward by this material, evolutionary, semiotics forces self-organization
and selection together as two indispensable dimensions of evolutionary
systems as discussed in chapter 1. Selection takes place on particular
dynamics, on the other hand, open-ended evolution is only possible
through the existence of a symbolic dimension mediated through a code.
Moreover, this code must be built out of some materiality that constrains
its representation power and which also ultimately defines an organism’s
ability to construct and discriminate its environment. This last point
raises the issue of implementation-independence and multiple
realizability [Umerez, 1995]. A semantically closed system is not
implementation independent because matter constrains its classification

78

Environment

Figure 8: Material Semiotics

power as well as its evolutionary potential. The second constraint is clear when we realize that two distinct
closures which at some point may establish the same representational function, if materially different, will

potentially evolve differently given their situated interaction with an
environment (see section 2.1.4 in chapter 2). The first constraint is
not so clear since we hypothetically allow the idea that two different
closures can have the same representational function. However, this
equivalence can only be established between formal symbol systems
which by definition are not materially constrained and are therefore
universal, that is, the set of possible semantic relations is infinite
(figure 6). Material symbol systems do not have this property. A
coding relation must be formed out of certain available material parts
in each domain (e.g. nucleotides and aminoacids in the genetic code),
and no semantic relation can escape them (this was discussed as the
parts problem in section 1.5 of chapter 2). In the genetic system we
can represent any protein, but we cannot represent and construct any
other material structure which is not made out of aminoacid chains.
Thus, our semiotics is necessarily constrained by matter, not just due
to selection pressures, but on account of the parts available for the

symbol system itself (figure 7).
Material sign systems are not universal and cannot represent anything whatsoever, but this turns

out to be their greatest advantage. The price to pay for the universality of formal symbol systems is complete
specificity, that is, full description of its components and behavior. Conversely, material sign systems are
based on certain building blocks which do not need a description. For instance, DNA does not need to encode
anything other than aminoacid chains, there is no need to include in genetic descriptions information
regarding the chemical constituents of aminoacids nor instructions on how to fold an aminoacid chain —
folding comes naturally from the dynamical self-organization of aminoacid chains. Notice how a logical
simulation of these genetic mechanisms needs to include all this information that comes for free when the
self-organizing characteristics of matter are actually used rather than simulated [Moreno et al, 1994]. This
information compression is discussed in section 5 by presenting a formal system of development in Genetic
Algorithms based on fuzzy logic. A computer simulation of this material semiotics is developed in chapter
5.

3. Contextual Genetic Algorithms

The essence of Genetic Algorithms (GA's) lies on the separation of the description of a solution
(e.g. a machine) from the solution itself: variation is applied solely to the descriptions, while the respective
solutions are evaluated, and the whole selected according to this evaluation [Holland, 1975]. A genetic
algorithm "is primarily concerned with producing variants having a high probability of success in the
environment" [Langton, 1989, page 35]. Nonetheless, one important difference between evolutionary
computation and biological genetic systems, lies precisely on the connection between descriptions and
solutions, between signifier and signified. In genetic algorithms the relation between the two is linear and
direct: one description, one solution. While in the biological genetic system there exists a multitude of
processes, taking place between the transcription of a description and its expression, responsible for the
establishment of an uncertain relation between signifier and signified, that is, a one-to-many relation.

"The proteins encoded by [DNA] are [...] oxymorphic: their individual shapes are precisely unpredictable. So
long as this is true, the genomic language, like our own languages, will not have a logical link between

79

Figure 9: Direct Encoding of traditional GA’s

Figure 10: Indirect Encoding and Extended Syntax
in Contextual Genetic Algorithms

signifier and signified. This will not prevent its being read or understood; rather, it will assure that DNA
remains a language expressing as full a range of meanings through arbitrary signifiers as any other
language." [Pollack, 1994, p. 70]

In other words, the same genotype will not always produce the same phenotype; rather, many
phenotypes can be produced by one genotype depending on changes in the environmental context. If the
effects of changing environmental contexts affecting gene expression within an individual can be harnessed
and used to it's selective advantage in a changing environment, then we can say that such an individual has
achieved a degree of control over its own genetic expression. It is the objective of this chapter to propose
computational schemes which may be able to achieve this degree of control.

Genetic algorithms explore the semiotics
of the genetic system as depicted in figure 2, solely
in its pragmatic dimension and in the coded
information portion of its semantic dimension. A
GA is defined by a population of symbol strings S
(Chromosomes) which encode a population of
solutions x to a problem. Variation (e.g. crossover
and mutation) is applied to the strings, while the
solutions are evaluated regarding some problem.
The best chromosome-solution pairs, according to
the evaluation preformed by a fitness function, will
have more (mutated and crossed over) copies of
themselves in the next generation. The fitness
evaluation implements the pragmatic dimension,

while the encoding of solutions to our problem in descriptional strings implements the coded portion of the
semantic dimension. Traditional GA’s have a one-to-one mapping between chromosomes and solutions, in
other words, there is a direct encoding scheme between genotype and phenotype (figure 8). Code 1 in figure
8 implements the semantic relation: on the upper side we have descriptions (signifiers), and on the lower side
solutions (signifieds), which relate to each other linearly.

In order to expand GA’s to model more
aspects of the semiotics of the genetic system, we
can act on both sides of this code. Expanding the
upper portion enhances the syntax (e.g by allowing
2 types of symbols), while expanding the lower
portion enhances the semantics of GA’s with a
developmental stage, yielding GA’s with indirect
encoding and a more complicated syntax (figure 9).
Both of these expansions can introduce nonlinear
interactions, in particular the extension of semantic
relations with a developmental self-organization
system such as boolean networks [Dellaert and
Beer, 1994] or L-Systems and Neural Networks
[Kitano, 1994, 1995] offers the desired coupling of
models of self-organization to models of Natural
Selection.

The expansion of the syntactic dimension
makes GA’s more accurate models of the Genetic
System which is rich in nonlinear interactions

80

Figure 11: U-insertion in Trypanosomes’ RNA

before translation through the genetic code (e.g. RNA Editing). Furthermore, since the systems which
implement the development of solutions and the manipulation of chromosomes (symbol strings) can receive
inputs other than chromosomes (e.g. environmental observables) genetic transcription and solution
development may be dependent on contextual factors. Hence, I refer to these expanded GA’s as Contextual
Genetic Algorithms (CGA’s). In the next sections both of these avenues are pursued separately.

4. Exploring Syntax and RNA Editing

The genetic semiotics described in section 2.1 (figures 3 and 4) expands the syntax of the
traditional genetic semiotics of figure 2 by postulating richer symbolic interactions than mere DNA/RNA
transcription. If a second type of symbols exists, which operate with genetic messages and in so doing change
the latter’s encoded meaning, their access to environmental information can provide the genetic system real-
time control of genetic expression according to context. This ability would certainly be useful for
phenotypical development in changing environments. Some evidence has been presented [Benne, 1993;
Stuart, 1993; Simpson and Maslov, 1994; Lomeli et al, 1994] that RNA Editing is used in some genetic
systems in different amounts according to different contexts (namely, different stages of a developmental
process).

4.1 RNA Editing

The discovery of messenger RNA (mRNA) molecules containing information not coded in DNA,
first persuaded researchers in molecular biology that some mechanism in the cell might be responsible for
post-transcriptional alteration of genetic information; this mechanism was called 'RNA Editing' [Benne at
al, 1986]. "It was coined to illustrate that the alterations of the RNA sequence (i) occur in the protein-coding
region and (ii) are most likely the result of a posttranscriptional event" [Benne, 1993, page 16]. The term is
used to identify any mechanism which will produce mRNA molecules with information not specifically
encoded in DNA. Usually we will have insertion or deletion of particular bases (e.g. uridine), or some sort
of base conversion (e.g. adenosine Ú guanisine).

The most famous RNA editing system is that of the African Trypanosomes [Ibid; Stuart, 1993]. The
mitochondrial DNA of this parasite, responsible for sleeping sickness, "consists of several dozen large loops
called maxicircles and thousands of smaller ones called minicircles." [Rennie, 1993, page 132] At first, the
minicircles were assumed to contain no genetic information, while maxicircles were known to encode
mitochondrial rRNA. However, the maxicircles were found to possess strange sequence features such as
genes without translational initiation and termination codons, frame shifted genes, etc. Furthermore,

observation of mRNA's showed that many
of them were significantly different than
the maxicircles from which they had been
transcribed. These facts suggested that
mR N A ' s w e r e e d i t e d p o s t -
transcriptionally.

It was later recognized that this
editing was performed by guide RNA's
(gRNA's) coded mostly by the
minicircles, the strands of DNA
previously assumed to contain no useful

81

information [Sturn and Simpson, 1990; Blum, Bakalara, and Simpson, 1990]. In this particular genetic
system, gRNA's operate by inserting, and sometimes deleting, uridines. To appreciate the effect of this
edition consider figure 10. The first example [Benne, 1993, p. 14] shows a massive uridine insertion
(lowercase u's); the aminoacid sequence that would be obtained prior to any edition is shown on top of the
base sequence, and the aminoacid sequence obtained after edition is shown in the gray box. The second
example shows how potentially the insertion of a single uridine can change dramatically the aminoacid
sequence obtained; in this case, a termination codon is introduced.

It is unclear how exactly gRNA's insert uridines into mRNA's; basically, the shorter gRNA strings
base-pair with stretches of mRNA, and at some point will insert a number of uridines [Seiwert and Stuart,
1994]. An interesting aspect of the gRNA/mRNA base-pairing is that it is more general than the Watson-
Crick base-pairing found in DNA and RNA, it is more ambiguous since “uracils in mRNA can be specified
by either guanine or adenine in gRNA” [Stuart, 1993, page 36]

But even if the precise mechanisms of RNA editing are not yet know, its importance is
unquestionable, since it has the power to dramatically alter gene expression: "cells with different mixes of
[editing mechanisms] may edit a transcript from the same gene differently, thereby making different proteins
from the same opened gene." [Pollack, 1994, page 78] (one-to-many relations). It is important to retain that
a mRNA molecule can be edited in different degrees precisely according to the concentrations of editing
operators it encounters. Thus, at the same time, several different proteins coded by the same gene may
coexist, if all (or some) of the mRNA's obtained from the same gene, but edited differently, are meaningful
to the translation mechanism.

If the concentrations of editing operators can be linked to environmental contexts, the
concentrations of different proteins obtained may be selected accordingly, and thus evolve a system which
is able to respond to environmental changes without changes in the major part of its genetic information
(genome size optimization). One gene, different contexts, different proteins. This may be precisely what the
Trypanosome parasites have achieved: control over gene expression during different parts of their complex
life cycles.

"Space is clearly not a problem for mammalian nuclear DNA, so the [previous] rationale is not so obvious
for the [editing mechanisms of mammals]. Also there, however, we see one gene encoding two proteins. In
mammalian genomes, gene duplication followed by separate evolution of the two copies would be a more
obvious way of producing closely related proteins in regulatable amounts. RNA editing, however, does
provide the opportunity to introduce highly specific, local changes into only some of the molecules. [...] It
could be reasoned that somehow this would be more difficult to achieve via gene duplication, since
independently accumulating mutations would make it harder to keep the remainder of the two sequences
identical" [Benne, 1993, p. 22]

Thus, RNA editing may be more than just a system responsible for the introduction of uncertainty
(one-to-many relations), but also, and paradoxically, a system that may allow the evolution of different
proteins constrained by the same genetic string. In other words, even though one gene may produce different
mRNA's (and thus proteins), the latter are not allowed heritable variation since they are always constrained
by the gene from which they are edited, and which is ultimately selected and transmitted to the offspring of
the organism. We can see RNA Editing, especially in the case of gRNA's, as a case of co-adaption of two
distinct systems: the stored genetic information (e.g. maxicircles) and the contextual editors (e.g.
minicircles), also stored in DNA, but independent and meaningless to the larger semantic loop of the genetic
code (figure 11).

The dependent evolution of one gene and several contexts, as expressed by Rob Benne in the
previous quote, may allow the introduction of highly specific, local (contextual) changes, more effectively
than the independent evolution of several genes. If all of the different expressions were allowed different

82

DNA

mRNA
gRNA gRNA

mRNA
mRNA
(edited)

(edited)

Genetic Code System

RNA Editing System RNA Editing System

CodeCode Code
Code

aa-chains aa-chains

Proteins
Proteins

Figure 12: RNA Editing System

genes, they would evolve separately not only increasing the size of the genome, but also, possibly, making
it harder to maintain coherent, multicellular, phenotypes as well as coherent developmental processes. For
instance, the editing of several genes of the Trypanosoma Brucei is developmentally regulated [Stuart, 1993]
which may be of evolutionary advantage for these parasites [Simpson and Maslov, 1994]. Though in the
course of evolution editing was partially or completely eliminated in many lineages of eukaryotic organisms
containing mithocondria, by reverse transcription of partially edited mRNA’s, it may be useful for the
development of parasitic adaptations as is the case of the developmental regulation of editing in T. Brucei,
because parasites need to survive in several completely different environments which require very different
responses from them[Ibid]. The African Trypanosomes for instance, use the famous Tsé Tsé flies as carriers
before infecting mammals; both present the parasite with completely different environments that trigger in
it very different stages of development, at least in great part through the workings of the RNA editing system.

The role of RNA editing in the development of multicellular organisms has also been shown to be
important, Lomeli at al [1994] have discovered that the extent of RNA editing affecting a type of receptor
channels responsible for the mediation of excitatory postsynaptic currents in the central nervous system,
increases in rat brain development. As a consequence, the kinetic aspects of these channels will differ
according to the time of their creation in the brain’s developmental process.

We can think of DNA as a set of symbolic descriptions based on two types of symbols: type 1
symbols will be expressed in mRNA molecules and will stand for actions to be performed; type 2 symbols
will be expressed in gRNA molecules (or other editing mechanisms) and will stand for contextual
observables. RNA editing can be seen as a set of symbolic operations performed with symbols of both types,

83

Figure 13: CGA with Expanded Syntax Only

resulting in symbols of type 1 to be translated into actions by the genetic code. This implements the two type
symbol semiotics system described in section 2.1.

4.2 A Formal Model of Genetic Editing

In this subsection I develop a formal
model of CGA’s which expands the syntactic
dimension alone (figure 12). It is a conceptual
model of RNA Editing, and thus of the two type
symbol semiotics of section 2.1.

In GA's, genes are substituted by strings
of symbols taken from a binary vocabulary V = {0,
1} and called V-strings. The genotype of an
individual, referred to as its symbolic description, is
the set of V-strings necessary to produce a
phenotype or solution alternative [Goldberg, 1989].
The translation of symbolic descriptions into the
space of solutions is performed by invariant formal
rules which define a code for a particular
application. In the following, symbolic descriptions are comprised of only one V-string.

Definitions necessary for a GA:

1. V is a vocabulary with two symbols: V = {0,1}.
2. S is a V-string of dimension n : S = s1s2s3 . . . sn, si � V, i = 1, 2, ..., n. Let Sn denote the power

set of V-strings of dimension n.
3. Different operators can be defined to manipulate V-Strings, they are functions defined as

follows: O: Sn× Sn×...× Sn �Sn
 O(S1, S2,... Sk) = S � Sn. Examples of such operators are the
usual Crossover and Mutation operators. Cross(S1, S2)= S3, S4, this operator randomly
chooses a locus, 1�j�n, of the two input strings and produces two other strings constructed
from the first, by exchanging sub-sequences before and after the locus. Mut: (S1)= S2, this
operator randomly flips some of the symbols in the string by other symbols in V. This flipping
can occur in every position of the string with a very small probability.

4. P(g) ={Si
 i = 1, ...,np}, is a population of np V-strings at generation g.
5. X = X1×X2×...×Xd is a space of solutions, of dimension d, for a particular problem. Xi is the

universal set of a relevant variable xi, i = 1, 2, ..., d. 1 maps V-Strings S uniquely into solution
alternatives x. 1 : Sn �X
 1 (S) = x � X. This mapping establishes the translation rules
between symbolic descriptions and solution alternatives: the code. An individual is composed
of a symbolic description, S � Sn, and a solution alternative, x � X computed through 1.

6. The fitness of a solution x, regarding some problem, is given by the function fit: X � Ü

The Algorithm (adapted from Mitchell [1996a]):
After defining the code 1 for some problem:

1. Start with a randomly generated population P.
2. Calculate fit(x) for x encoded in each V-String of P.

84

3. Create a new population P’ from P.
4. Go to step 2 (unless some fitness satisfaction criteria is met).

Step 3 is defined by repeating the following sub-steps until np V-Strings have been created:

a. Select a pair of parent V-Strings from P. The probability of selection is proportional to the
value of fitness of each V-String calculated in step 2. The larger the value of fit(x), the larger
the probability of x being selected. Selection is done “with replacement”, that is, the same V-
String can be selected more than once.

b. Crossover: with probability pc (Crossover probability), use the operator Cross, from definition
3 above, on the V-String pair selected in a. In no crossover is performed, form two offspring
which are exact copies of the parent V-Strings. If crossover does take place, the offspring will
be the output V-Strings from Cross.

c. Mutate the two offspring at each V-String position with probability pm (mutation probability).
Place the resulting V-Strings in the new population P’.

In the traditional GA above, the relation between S and x is a result of direct application of the
mapping 1 . In the CGA with string editing, however, this mapping is more complicated. Before S is
translated into the space of solutions, it will possibly be altered through interaction with a different sort of
string.

Definitions Necessary for the CGA with String Editing:

1. U is a vocabulary with three symbols: U = {0,1,�}.
2. E is a string of length m over the vocabulary U, or a U-string of dimension m: E = e1e2e3 ... em,

ei � U, i = 1, 2, ..., m. Let Em denote the power set of U-strings of dimension m. These
U-strings function as the editing agents of the population of V-strings. The length of U-strings
is assumed much smaller than that of the V-strings: m << n, usually an order of magnitude.
Maintaining the analogy with the RNA editing system of the Trypanosomes, V-strings can be
referred to as maxistrings, and U-strings as ministrings. Here I will assume that the editing
agents are constant, that is, the structure of the ministrings will be maintained through the
successive generations of P.

3. Let ×× denote a finite family (ordered set) of l U-strings: ×× = {E1, ..., El}.
4. For each family of U-strings, ××, there exists an associated family of mappings

ØØ = {f1, f2, ..., fl}. Each mapping fi associates its respective U-string in ×× with a V-string, and
produces another V-string: fi: E

m × Sn
� Sn. The associated pair (××, ØØ) = {(E1, f1), (E2, f2), ...,

(El, fl)} is called a family of editors. In other words, each editing ministring will have a
function which is also dependent on the maxistring to be edited. This function will result in an
edited maxistring, and thus specifies how a particular ministring edits maxistrings: when the
ministrings match a portion of a maxistring, a number of symbols from the V vocabulary is
inserted into or deleted from the maxistring. To introduce the sort of ambiguity the guanine-
uracil base pairing creates in the gRNA/mRNA duplex, the U includes an extra symbol '�' ,
matching both '1' or '0' in V. Ministrings match more than one subsequence of maxistrings.

5. A U-string E � Em, matches a substring, of size m, of a V-string, S � Sn, at position k if:
}k
1�k�n, ~i = 1,2, ...,m: ei
sk�i � ei
�

85

6. Example of a family of mappings f: Em × Sn
� Sn. ØØ = {Add_1(E, S), Del_1(E, S}}. Add_1 will

add the symbol '1' at position k+m+1 if E matches S at position k; all string symbols in S from
position k+m+1 to n-1 are shifted one position to the right (the symbol at position n is lost).
Del_1 will instead delete the symbol '1', if it is present at position k+m+1 when E matches S at
position k; the string symbols are shifted in the inverse direction (the symbol at position n is
randomly selected from V).

7. Let the concentration of a family of editors (××, ØØ) be defined by ÙÙ = {v1, v2, ..., vl}, where vi

represents the average number of editors (Ei, fi) per V-string of a population P. If np is the
number of V-strings in P, then there will be vi # np editors (Ei, fi) randomly distributed by the np

V-strings of P(g).

The algorithm for the CGA with string editing is essentially the same as the regular GA, except that
step 2 is now more complicated. Code 1 no longer produces solutions x straight from the V-Strings S of P,
but from intermediate V-Strings S’ obtained from P after editing. Step 2 is now redefined as:

a. Take each V-String S of P. Select each editor (El, fl) from ××. With probability vl from ÙÙ, edit
Swith El. If El matches S, then operate (edit) S with fl to obtain S’.

b. Decode x from S’ (not S) and calculate its fitness. This is the fitness of individual (S, x).

Figure 13 shows the operational layout of this CGA with string editing. Generally, we have a
population P of np maxistrings, and a family of l editors with different concentrations. Before the maxistrings
can be translated into the space of solutions X, by the mapping 1, they must "pass" through successive layers
of editors, present in different concentrations. At each generation, the same number of editors (given by the
concentrations) is randomly distributed over these layers. Thus, in the example of figure 13, editor 1
(E1, Add_1) with a concentration of 0.5, will have np/2 copies of itself randomly distributed by the np

positions of its layer; there will be on average 0.5 of such editors 'meeting' each maxistring. When an editor
meets a maxistring, and its ministring matches some subsequence of the maxistring, the editor's function is
applied and the maxistring is altered.

86

1*01•••*0
1 m

10011010 ••• 101
1 n

���

S S S np2 31
S

Population of Maxistrings P

(

(, f
2
)

(, f
l
)

, Add_1)
Family of l editors (×, Ø)

Ministrings functions

E2

El

0.5

v

Concentrations np

np

np

/2

v

l

2

.v
2

.v
l

10011110 ••• 001
1 n

���

S' S' S' np2 31 S'
Edited Population:

x x x x
1 2 3 np

1Code:

Solution alternatives in X:

Symbolic Descriptions

Solutions

Figure 14: CGA with String Editing

4.3 Context and Evolutionary Systems
In biological genetic systems RNA editing regulates gene expression. Somehow, organisms have

used the edition of mRNA molecules to their advantage, perhaps by linking it to environmental context. If
a particular external event has the effect of changing the concentrations of editing agents in some genetic
system, then those genes which are able to produce fit phenotypes in the different contexts will be selected.
Notice that changing environmental context will not merely affect the concentration of editing agents, but
also, potentially, the fitness landscape of the genetic system. Thus, the ability to link changes in the
environment with internal parameters such as concentrations of editing agents, gives organisms an adaptive
advantage as gene expression can become contextually regulated. The idea is the introduction of the second
kind of semantic relation leading to a second type of symbol described in section 2.1. The editing strings are
now more than symbolic constraints, they are also semantically related to context variation through a
(postulated) code �.

Figure 14 shows precisely this kind of coupling between environmental context and the regulating
effects of editor concentrations. Notice, at the bottom of the figure, the dependence of the fitness landscape
of the solution alternative space X, on environmental context. When the context changes, not only are the
symbolic descriptions edited differently, but the solution alternatives are also evaluated differently. The
inclusion of this extra level of semantic relations and pragmatic evaluations establishes the kind of genetic
semiotics described in section 2.1.

87

���

S S np21 S

np

np

.v2

.vl

���

S' S' np21 S'

x x x1 2 np

1Code:

np.v1

(, f2)

(, fl)

E
2

Elv

Concentrations

v

l

2

v
1 (, f

1
)

E
1

Context

X

�
�

�

Symbolic
Operations

Semantic
Relations

Semantic
Relations

Code �

Figure 15: CGA with Editing Strings Linked to Context which affects Fitness

Consider now two sets of concentrations C1 and C2 of our family of editors (××, ØØ) linked
respectively to two evaluation functions, fitness1 and fitness2. When the first context is at play, we obtain
a population of solution alternatives ;;1 which will be evaluated by fitness1; alternatively, when the second
context is at play, ;;2 is evaluated by fitness2. Notice that both ;;1 and ;;2 are produced from the same
population of symbolic descriptions P. Those symbolic descriptions in P which tend to produce fit solution
alternatives in both ;;1 and ;;2 (evaluated by fitness1 and fitness2 respectively) will have a higher probability
of being selected. This result will of course be dependent on the timing and sequence of application of
contexts: if contexts are alternated rapidly, then it will be possible to have symbolic descriptions, with a high
probability of selection in the population, which produce fit solutions in only one of the contexts; if contexts
are maintained a bit longer before alternating, those symbolic descriptions that tend to produce fit solutions
in both contexts will have a higher probability of selection; if the contexts are maintained too long, however,
it will be more difficult to evolve symbolic descriptions able to survive in both contexts. These results are
trivial to obtain in computer simulations and follow Levins' [1968, chapter 2] strategies of adaptation. This
kind of CGA may be useful in situations where the evaluation of solutions changes dramatically according
to context. I do not pursue the computational description of this model further in this dissertation, because
the computational explorations of CGA’s are dedicated to the development portion of CGA’s presented in
the next section and chapter 5. The existence and utility of syntactic extensions of genetic semiotics are
validated with the knowledge we possess of the RNA editing system discussed above.

5. Development and Material Constraints

88

In chapter 2 (section 1.5.3) I equated the notion of embodiment with von Neumann’s parts problem.
This aspect of evolutionary systems lies on the semantic area of the semiotics of the genetic system. In figure
2 it is depicted in the bottom part of the semantic relations axis, that is, the development of a phenotype from
amino acid chains. Especially in computational realms, we tend to think of the genetic system as a one-to-one
mapping of genetic strings to completed phenotypes or solutions to a problem. However, as emphasized
earlier (section 2.2 and chapter 1), biological genetic strings encode amino acid strings that will themselves
self-organize (fold and subsequently engage in some developmental process) into a final product that is not
explicitly genetically encoded — if it were, genotypes would have to be tremendously larger. This fabulous
information compression is achieved by utilizing powerful dynamic building blocks, the amino acids, whose
physical characteristics do not require encoding.

To explore these ideas computationally, we need to use genetic algorithms that code for some
computational building blocks whose (computational) dynamic characteristics do not require genetic
encoding, and which will self-organize into a final solution not explicitly encoded. The self-organization
of solutions from encoded descriptions is an instance of the process of emergent morphology/classification
as discussed in chapter 1. In the following I discuss some approaches to achieve models of this selected self-
organization. I also propose a scheme in which the computational building blocks are represented by fuzzy
sets to be implemented in chapter 5.

5.1 Development in Artificial Life

Development refers to those processes taking over an organism once it is reproduced and which
are responsible for the transformation of its form. Generally, artificial life models of development are based
on Wilson's [1988] ideas: a GA will encode "a production system program (PSP) consisting of a finite
number of production (condition-action) rules [...] of the form: X + Ki < KjKk. The K's stand for cell
phenotypes and X represents the local context". [Ibid, page 159]. Basically, the symbolic descriptions of the
GA code for a population of "mother cells", or "eggs". These "eggs" code for a specific PSP (a set of
production rules) dictating how the "cell" develops into some multicellular aggregate, which is then evaluated
for its fitness. The more fit aggregates will have the symbolic description of its "egg" reproducing with a
larger probability in the population. These ideas have been used mostly to generate neural networks [Kitano,
1990; Belew, 1993; Gruau, 1992] or more generally sensorimotor control systems [for a good overview see
Husbands et al, 1994].

Lately much attention has been posited on evolutionary strategies that bring together self-
organizing systems and natural selection inspired algorithms. Particularly in the field of Artificial Life,
Kitano[1994], and Dellart and Beer [1994], have proposed GA’s which do not encode directly their solutions,
but rather encode generic rules (through L-Systems) which develop into boolean networks simulating
metabolic cycles. With these approaches, GA’s no longer model exclusively selection, but also a self-
organizing dimension standing for some materiality. The GA does not search the very large space possible
solutions, but a space of basic rules which can be manipulated to build different self-organizing networks.
These networks are then started (sometimes with some learning algorithm) and will converge to some
attractor behavior standing for a solution of our simulation. Rather than directly encoding solutions, the GA
harnesses a space of possible self-organizing networks which will themselves converge to a solution —
emergent morphology.

Usually such indirect encoding schemes for genetic algorithms are based on the encoding of generic
rules for developing dynamic systems, e.g. boolean networks [Dellaert and Beer, 1994] or neural networks
[Kitano, 1994, 1995], which will themselves self-organize into final solutions. The primary advantage of
indirect encoding GA’s is the information compression of encoded solutions into smaller chromosomes. The

89

Figure 16: Fuzzy Set as the state of a
dynamical system

GA does not search the very large space of possible solutions, say, the set of weights of a large neural
network (see chapter 5), but a space of generic rules which self-organize into solutions (usually L-Systems
that produce large neural networks). Indirect encoding in GA’s is an attempt to utilize the advantages of
embodiment discussed earlier in a computational realm.

The semiotic genetic system does not encode every detail of the obtained solutions, rather it
encodes a development scheme which relies on the pre-existence of rich enough building blocks that do not
require a description. In biological systems these building blocks are amino acids whose dynamical
characteristics genes do not need to encode as they “come for free” with the laws of matter. In the
computational realm, we can ease the chromosomes of a GA from having to describe every detail of the
solutions through an indirect encoding scheme. However, some form of that description is unavoidable
somewhere else in a computer implementation, since computer programs require full specification by
definition. It is therefore important to have as simple as possible a description of the dynamic building blocks
for the indirectly encoded GA solutions. If a true computational dynamic system, such as a boolean network,
is used, every time a chromosome is decoded into a set of rules to build the network that will self-organize
into a solution [Dellaert and Beer, 1994], the network will actually have to be implemented and run for a
number of cycles in all its details. Thus at each step of the GA, the evaluation of a chromosome relies on a
computationally demanding evaluation procedure that must implement and observe the dynamic behavior
of a network, which many times develops into long transient cycles. For this reason I have developed an
indirect encoding scheme which utilizes fuzzy sets as representations of the states of dynamical systems
presented next.

5.2 Fuzzy Development Programs: Emergent Classification in Contextual Genetic
Algorithms

5.2.1 Fuzzy Sets as Dynamical States

Fuzzy sets [Zadeh, 1965] are extensions of classical sets which allow members of a set to have a
degree of inclusion in it. That is, rather than an element being an element of a set or not, it is an element to
a degree defined in the unit interval. ‘0’ represents complete non-inclusion and ‘1’ full inclusion.
Mathematically, fuzzy sets are simply unconstrained mappings to the unit interval. Unconstrained because
the degree of membership of an element in set is not constrained by the membership value of another element
(Fuzzy Sets are introduced in more mathematical detail in Chapter 3). Even though fuzzy sets were developed
with a natural language interpretation, for the purposes of the
remaining of this chapter, I will consider simply their
powerful formal characteristics and give them a totally
distinct interpretation. I wish to emphasize that by no means
does this imply a disagreement with fuzzy logic’s
interpretation that I pursued in chapters 3 and 5, but a mere
pragmatic desire to use a fully developed formal edifice that
I believe to be very useful to tackle the problems discussed in
this chapter. In other words, I am using fuzzy sets simply as
mappings to the unit interval.

Since the interval of membership of an element in
a fuzzy set is the real unit interval, it is clear that a fuzzy set
is a mathematical structure which is able to capture the state
of any system whose components’s states are defined by

90

numerical values, inasmuch as any real interval can be mapped to the unit interval. In other words, the
elements of the set represent components of some system which take values in the real unit interval.
Formally, we start with the definition of a universal set X containing all the elements (variables) x of system
X. A fuzzy set A is defined by the (membership) function A(x): X Ú [0,1], and it represents a particular state
of system X (figure 15). A dynamical system is a system with a state-determined transformation f between
subsequent states, that is, a transformation which relies only on the present state of a system, At(x), and
optionally some set of numerical inputs It, to calculate its next state: At+1(x) = f(At(x), It). Therefore, the state
of any dynamical system of several components can be represented by a fuzzy set A, and a general dynamical
system is defined by a fuzzy set function f on the universal set X.

The function f, to yield a dynamical system with complex, nonlinear, behavior needs to be much
more complicated than a simple fuzzy logic connective such as intersection and union, since these are fully
linear as they compute the next value of x independently from the values of other elements of X. f must
define a complicated convolution of the fuzzy set in terms of some general rule. The conventional
convolution operation, primarily used in signal processing, sums the multiplication of each element of a
signal by each element of a reference pattern (mask), in other words, it weights the value of each element
regarding the mask, and then aggregates all the weights. It is fairly easy to extend this notion to fuzzy logic
to obtain nonlinear convolutions [e.g. Lee et al, 1996], by substituting multiplication and summation by
appropriate fuzzy operations and signals by fuzzy sets. Thus a fuzzy convolution, FCONV, of fuzzy set A(x)
by a fuzzy mask M(x) yields fuzzy set B(x): , where T andFCONV(A(x),M(x))
B(x)
U��n
	� M(n)TA(x	n)
U are appropriate fuzzy operations from the large family of fuzzy connectives. FCONV depends on the fuzzy
connectives chosen as well as the mask selected. If we construct function f of the definition of dynamical
system above as a sequence of fuzzy convolutions with different fuzzy connectives and masks, then such
dynamical systems can be as complicated as we desire.

The definition of a dynamical system as a sequence of fuzzy convolutions is interesting and can
potentially offer a general mathematical formalism to deal with complex systems, but that is not the scope
of the work here pursued. Unless we wish to study the general mathematical properties of dynamical systems,
there is little advantage in using the fuzzy set formalism above instead of the real thing. If one desires to
implement say, a boolean network, it is much more intuitive to do it directly than with the global perspective
offered by the fuzzy convolution scheme. What is relevant for the remaining of this section is that the state
of a dynamical system of several components can be represented by a fuzzy set.

5.2.2 Fuzzy Development Programs

Consider an initial fuzzy set A0(x) = 0.5 for all x of X, it is the initial condition of our system X. 0.5
is the furthest point away from 0 and 1. If 0 means ‘off’ and 1 means ‘on’, then in fuzzy logic’s terms, 0.5
is the most uncertain point. Consider now a sequence of n fuzzy sets F1, F2, à, Fn, which will be applied to
A0 with the sequence of n fuzzy operations (also referred to as connectives) X1, X2, à, Xn, that is, F1 is applied
to A0 with X1, yielding A1, which in turn is applied F2 with X2, yielding A2, and so forth. This sequence of n
fuzzy sets Fi and operations Xi develops system X from state A0 to state An. It is therefore a program to
develop An(x)from A0(x) in n steps: a fuzzy development program (FDP). It leads system X through a sequence
of states represented as a sequence of n fuzzy sets A1, A2, à, An on a universal set X. Notice that if some of
the operations Xi are non-commutative, then the sequence of the FDP matters, which is desired of
developmental models. For instance, the fuzzy logic connective is not commutative. If it is in the poolABB

of operations Xi, the permutations of the order of application of the FDP will yield different final states An.
For the purposes of this section, the FDP sequence does not need to be the result of a dynamical

system defined as a fuzzy convolution function outlined above. All we need to know is that there is a system

91

Figure 17: Examples of Simple Fuzzy
Set Shapes

Figure 18: Triangular Fuzzy Set Shape Applied to
Sixth Octant of X (p=6) and stretched 2 octants to
each side (s=2). Shown for two division parameter
(d=1 and d=2).

X which undergoes a process of development defined by the sequence of n states Ai(x). The precise dynamic
mechanism that causes state An to develop from A0 is unknown. We do know however that by applying the
sequence of n fuzzy sets Fi and operations Xi to A0 we obtain An. It is a higher level knowledge of the
observed or desired characteristics of system X, but not of the nature of its lower level dynamics. As explored
in section 5.2.1, we can also study the lower-level dynamics in this fuzzy set framework with fuzzy
convolution operations, but for my purposes here of linking development and embodiment to evolutionary
strategies, it is not necessary to define any dynamics, only its outcomes through a sequence of states
represented by fuzzy sets. FDP’s are not dynamical systems, but higher level representations of dynamical
development.

The advantage of using fuzzy sets to represent states of dynamical systems lies in the ability to use
a very large pool of existing fuzzy logic operations in order to define the transformations between
developmental stages. That is, operations Xi that transform fuzzy set A0 to An can be easily constructed with
the whole edifice of fuzzy logic connectives. Furthermore, the fuzzy sets Fi and operations Xi can be regarded
as higher-level representations of known global transformations to system X observed in our models. In this
sense, fuzzy sets may offer a more intuitive way of thinking about the development of system X, than the
lower-level (convoluted) interactions of components.

5.2.3 Information Requirements of Fuzzy Development Programs

Consider a small pool of nF typical fuzzy set shapes
referred to as). These shapes include the traditional trapezoidal
fuzzy set shapes of fuzzy control and other simple shapes (some
examples are shown in figure 16, details in the implementation
of this scheme in Chapter 5). Consider a small pool of nO fuzzy
set operations referred to as 2. These operations range from
commutative operations such as fuzzy union (F) and intersection
(�) to non-commutative operations such as and . AABB AAB
FDP is a sequence (string) S of n fuzzy sets Fi �) and n
operations Xi � 2: S = X1 F1 X2 F2 à Xn Fn which are to be
applied in sequence to the initial state A0(x) of system X.

Notice
that the fuzzy sets Fi �) are not yet properly
defined. That is, they were defined in terms of a set
of shapes), but to be proper fuzzy sets, they must
also be defined on a particular universal set. The
universal set of our system is X, the set of all
components (variables) x of a dynamical system.
As a first approach, the fuzzy shapes of) could
be defined over X, but let us increase the flexibility
of FDP’s by defining a partition of X in an even
number nX of parts. If nX = 8, X is divided in equal
octants. Now each Fi of the FDP S is associated
with a specific part of X: p = 1, à nX. In other
words, each shape Fi is applied to part p of X
through operation Xi. In addition, we can create an
extra parameter s = 1, à nX/2, which represents the

32 Discrete type variables can also of course be represented in FDP’s as fuzzy sets can be
defuzzified into crisp sets. An example is discussed in chapter 5.

92

�
 n log2nF � log2nX � 2#log2

nX

2
� log2nO

(1)

number of parts of X that shape Fi should be stretched over. Figure 17 shows the universal set X divided in
octants (nX = 8), and a triangular fuzzy shape (dotted line) being applied to the sixth octant (p = 6) with a
stretch of two octants for each side of the sixth octant (s = 2). A final parameter d = 1, à nX/2 is defined
which represents the number of times shape Fi is going to be repeated in the portion of X given by p and s.
In figure 17, the dark line represents d = 1, meaning that the triangular shape is repeated once. If d were 2,
then the triangular shape would be narrowed in half, and repeated twice over the interval of X given by parts
4 to 8 (p=6, s=2), in figure 17 this is represented by the lighter line.

Each fuzzy set Fi of the FDP S is defined by a fuzzy set shape from), the part of X, p, the stretch
s, and the division factor d. Notice that the information required to describe the FDP S does not depend on
the size of X but on the parameters nX, nF, and nO, since we only need to identify the portion of X where the
shape of) is going to be stretched, divided, and applied with an operation of 2. To specify the part of X
chosen (e.g. octant), no information regarding the elements of X in that part is required. We need only log2

nF and log2 nO bits of information to identify nF fuzzy set shapes and nO operations from) and 2
respectively. We further need log2 nX bits to describe the position parameter p, and 2×log2 (nX/2) bits to
describe the stretch parameter s and division factor d. Therefore, log2 nF + log2 nX + 2×log2 (nX/2) bits are
required to identify a fuzzy set Fi in a FDP S, and log2 nO bits to identify its associate operation. For example,
if there are 16 possible fuzzy set shapes (
)
=16) and 16 possible fuzzy logic operations (
2
=16), and X
is divided in 16 parts, then log2 16 + log2 16 + 2*log2 8 + log2 16 = 4 + 4 + 6 + 4 = 18 bits are required for
each pair fuzzy set/operation in the FDP. If the length of the FDP is n = 8, then the FDP S requires 144 bits
to be described, that is, a 144 long bit string. Notice that this value is independent of the cardinality of X or
its parts. In summary, a FDP S requires the following number of bits of information to be described for any
X:

Assuming a constant small pool of fuzzy set shapes and fuzzy logic operations, as well as a constant
partition of X, it is possible to construct a fuzzy set of X with a constant amount of information �. The
ability to approximate any fuzzy set of X is naturally dependent on the length of the FDP’s used and on
the richness of its building blocks: the fuzzy set shapes and operations of) and 2. In other words, we
can potentially create a language to describe a system X of many components with a relatively small
FDP. In the previous example, if the cardinality of system X is 100, we may be able to describe its states
(fuzzy sets) with only 144 bits of information. Furthermore, the components of X are continuous type
variables32 defined on the unit interval, while the FDP description is binary (144 bits). In computational
terms, the components of X are real-type variables which usually require 4 to 10 bytes (32 to 80 bits)
each. The computational description of a small number of components easily surpasses the binary
description of a FDP by several orders of magnitude. For example, 100 real type components require
3200 to 8000 bits of information. Specific application examples are discussed in chapter 5.

93

���

S S np21 S

.

.

���

A np1 AA2

x x x1 2 np

1Code:

Development

FDP1
FDP2

FDPnp

Other Inputs
(Environmental
Context)

Figure 19: CGA with Developmental Stage based
on FDP’s. Chromosomes encode FDP’s which
develop into Fuzzy Sets, standing for Solutions.

5.2.4 General Purpose Genetic Algorithm with Developmental Indirect Encoding:
Emergent Classification

Utilizing the scheme above, states A(x) of
system X can be evolved (regarding some fitness
function) through a genetic algorithm (GA) which
codes not for the states themselves, but for FDP’s
whose sequences of operations produce A(x). The
chromosomes of the GA are bit strings of length �

encoding FDP programs, which develop into
(continuous) solutions A(x) that are not directly
encoded in the bit strings (figure 18). Usually
indirect encoding schemes for GA’s are based on
the encoding of generic rules for developing
dynamic systems, e.g. boolean networks [Dellaert
and Beer, 1994] or neural networks [Kitano, 1994,
1995], which will themselves self-organize into
final solutions. The primary advantage of indirect
encoding GA’s is the information compression of
encoded solutions into smaller chromosomes. The
GA does not search the very large space of possible
solutions, but a space of generic rules which can be
manipulated to build different self-organizing
systems. The fuzzy scheme above is more general
since it is not restricted to a particular dynamical
system (such as boolean networks or neural
networks), but can instead represent the states of any dynamical system. Furthermore, it defines continuous
variable dynamical systems as opposed to, for instance, strictly discrete boolean networks. FDP’s convert
binary strings into continuous fuzzy sets given a predefined pool of building blocks which ultimately define
the scheme’s effectiveness. As shown in figure 18, the decoding of FDP’s into fuzzy sets can also be
dependent on contextual inputs, if the fuzzy set operations used allow that sort of input. Thus, FDP GA’s are
also CGA’s.

Indirect encoding in GA’s is an attempt to utilize the advantages of emergent
morphology/classification discussed in chapter 1 and section 2.2 of this chapter in a computational realm.
The semiotic genetic system does not encode every detail of the obtained solutions, rather it encodes a
development scheme which relies on the preexistence of rich enough building blocks. In other words, it
harnesses a small subset of dynamical parts into a solution good enough given a fitness function (pragmatics).
It relies on the existence of building blocks that do not require a description. In biological systems these
building blocks are amino acids whose dynamical characteristics genes do not need to encode. In the
computational realm, we can ease the chromosomes of a GA from having to describe every detail of the
solutions through an indirect encoding scheme as discussed above. However, some form of that description
is unavoidable somewhere else in a computer implementation as everything must be specified in
computational environments. In other words, emergent classification in the computer realm, requires the
simulation of materiality in order to implement selected self-organization. In this case, the material dynamic
constraints are simulated with FDP’s.

It is therefore important to have as simple as possible a description of the dynamic building blocks
for the indirectly encoded GA solutions. The fuzzy set scheme above is an attempt precisely at that. If a true

94

computational dynamic system, such as boolean networks, is used, every time a chromosome is decoded into
a set of rules to build the network that will self-organize into a solution [Dellaert and Beer, 1994], the
network will actually have to be implemented and run for a number of cycles in all its details. Thus at each
step of the GA, the evaluation of a chromosome relies on a computationally demanding evaluation procedure
that must implement and observe the dynamic behavior of a network. By contrast, the FDP is not a dynamical
system, it is a sequence dependent (non-commutative) procedure for constructing the state of a dynamical
system without actually running it. FDP’s depend on a small vocabulary of simple parts, such as fuzzy set
shapes and operations, which are described by very simple equations. Notice that the fuzzy set shapes are
not defined on the universal set X, thus computationally we do not have to store its precise values regarding
a large X until the moment they are applied, at which time they are calculated from the simple equations.
Moreover, a FDP has precisely n steps of operation, unlike true dynamical systems whose components
interact in long cycles until some form of stability is reached.

FDP’s offer a simulation of true developmental dynamics which preserves some important
characteristics of development such as being constructed from a small pool of (simulated material) parts
which interact with one-another through a development program in order to define a final state. Since the
operations between these parts can be non-commutative, the order of application of parts is important as it
leads to different final results. Though not the real thing, they allow a transformation from a small discrete,
boolean, domain, to a large continuous domain without very computationally expensive implementations of
true dynamical systems. Furthermore, they can represent the state of any dynamical system, discrete or
continuous. Coupling them to GA’s, allows the establishment of computational counterparts of emergent
classification and selected self-organization with the immediate advantage of tremendous genetic information
compression. Some computational results of the FDP GA are discussed in chapter 5.

5.2.5 Computational Issues: Fuzzy Indirect Encoding as Solution Approximation

One final word in this section regarding modeling and simulation issues. The indirect encoding GA
scheme decodes chromosomes into dynamical systems (or simulations of) which require another simulation
code to define what the dynamical states mean. For instance, the nodes of Dellaert and Beer’s [1994] boolean
networks obtained from a GA, stand for such attributes as cell division or change of state. In the case here
developed, fuzzy sets are obtained from the indirect encoding of FDP’s in a GA, but these fuzzy sets have
to be given an interpretation in our simulation. Indirect encoding requires more attention to the hierarchy of
levels of simulation in computer models of selected self-organization. Chromosomes decode into FDP’s,
which based on a pool of pre-defined parts, construct a fuzzy set describing the state of a particular
dynamical system according to a second simulation code.

Depending on the problems to be solved, the language of fuzzy set shapes and operations, as well
as its accuracy (e.g. partition of the universal set) will be the dictating factors for the efficiency of this fuzzy
indirect encoding scheme. As it will become clear in chapter 5 with the discussion of specific applications,
the building blocks of FDP’s are rough approximating functions which are combined to yield solutions to
a problem. The rougher the approximations, the rougher the final solution. If only very simple fuzzy set
shapes are used, or only a very small number of partitions of the universal set is chosen, then naturally the
evolved FDP’s will be operating on a rough simplification of the space of solutions. In other words, large
portions of the space of solutions will be out of reach to the genetic algorithm. In many cases of extremely
large, rough, search spaces such simplifications might be the only avenue to reach fairly good solutions due
to computational limitations

The dependence on the characteristics of the building blocks is not surprising, since as discussed
in chapter 1 and section 2.2 of this chapter, it is the other side of selected self-organization and evolutionary
constructivism. The material building blocks used in evolving symbol systems constrain its universe of

95

classification or construction. The richer these building blocks, the larger this universe. Indirect encoding
schemes aim at the simulation of material building blocks in computational realms, likewise, the richness
of the computational building blocks is a constraining factor for evolved solutions. However, unlike material
systems who merely have to use building blocks, computational systems must at some level describe those
building blocks which poses serious limits to the complexity of usable building blocks. Simple fuzzy sets
organized into FDP’s seem to offer a simple enough language to describe complicated solutions as shown
in chapter 5.

